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Abstract Porcine hemoglobin hydrolysate (PHH) was pre-
pared with 6 different proteases (flavourzyme, papain, A.
S.1398, alcalase, pepsin and trypsin). There was no correla-
tion between extent of hydrolysis and antioxidant activity (p>
0.05). The peptic hydrolysate prepared at 60 min possessed
the strongest antioxidant potential (67.0±1.84%) among
different hydrolysates, which was fractionated into 4 major
types by ultrafiltration membranes with different molecular
weight cut-off (MWCO), PHH-I (Mw>10 kDa), PHH-II
(Mw=5–10 kDa), PHH-III (Mw=3–5 kDa) and PHH-IV
(Mw<3 kDa). PHH-IV possessed higher inhibitory effects of
lipid peroxidation and scavenging effects on superoxide
radical compared with larger MW fractions. Four fractions
possessed the scavenging effects on 1, 1-diphenyl-2-pic-
rylhy-drazyl (DPPH) and hydroxyl radicals in the order
PHH-IV > PHH-I > PHH-III > PHH-II. MW of the 2 major
peptide fractions from PHH-IV was located at 2476 Da (F1)
and 1042 Da (F2), respectively. PHH-IV could be utilized to
develop physiologically functional foods or therapy drugs.
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Introduction

Free radical-mediated reactive oxygen species (ROS) and
lipid peroxidation (LPO) have gained considerable attention
nowadays (Athukorala et al. 2006; Manso et al. 2008; Seema
et al. 2008; Nasirullah et al. 2009). ROS were thought to
create oxidative stress thereby causing various degenerative
diseases, such as atherosclerosis, rheumatoid arthritis, diabe-
tes mellitus, and Alzheimer’s diseases (Butterfield et al.
2002). Autoxidation occurring in food materials are also
induced by ROS because LPO is kept on by a free radical
mechanism (Je et al. 2007). LPO contributes to the
subsequent development of unpleasant off-flavours, dark
colors, poor texture and may also generate potentially toxic
end products (Thiansilakul et al. 2007). Recently, some
protein hydrolysates have been reported to exhibit antioxi-
dant activity (Je et al. 2005; Sakanaka and Tachibana 2006;
Klompong et al. 2007). In the past several years, many
researches reported that proteinases can affect the antiox-
idative activity of protein hydrolysate (Jao and Ko 2002;
Saiga et al. 2003). Thiansilakul et al. (2007) found that round
scad muscle hydrolysates produced with flavourzyme
exhibited a higher DPPH radical scavenging activity and
reducing power, but a lower Fe2+ chelating ability than
alcalase derived hydrolysates. Je et al. (2007) reported that
the hydrolysate from tuna backbone protein exhibited the
highest inhibitory effects on LPO than those prepared by
other proteases (alcalase, flavourzyme, neutrase, papain and
trypsin). The specificities of proteases contribute to the
length and amino acid sequence of peptides, which may
influence antioxidant activities of protein hydrolysates.

Porcine blood is an abundant by-product in the slaugh-
tering process in China with an estimated amount of one
million tons per year and the availability is less than 10%.
Except some porcine blood utilized as “blood tofu” for
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human consumption and blood powder for animal feed,
quite a few portion is discharged as sewage, which causes
severe environmental problems. Blood protein is nutritional
and functional, and it includes two main components,
plasma protein and hemoglobin. The proportion of hemo-
globin in blood protein is 60~70%. One approach for the
effective application of hemoglobin is enzymatic hydroly-
sis, which is widely used in food industry to prepare
hydrolysate with opioid activity (Nyberg et al. 1997),
bradykinin-potentiating activity (Lignot et al. 1999), anti-
bacterial activity (Nedjar-Arroume et al. 2006) and angio-
tensin I-converting enzyme inhibition activity (Yu et al.
2006) for nutritional therapy. Recently, a study on the
antioxidant activity of PHH produced using alcalase and
flavourzyme has been performed (Chang et al. 2007).
Nevertheless, reports on the antioxidant activity of PHH
prepared with other proteases are still scarce. An ultrafil-
tration (UF) membrane system is one of the methods to
obtain hydrolysate with the desired molecular size and good
functional properties. In the present study, the antioxidant
activity of PHH obtained with six different proteases and of
the fractionated hydrolysates prepared using UF mem-
branes were investigated by various assays, including the
ability to inhibit the autoxidation of linoleic acid and the
scavenging effects on DPPH/superoxide/hydroxyl radicals.
In addition, molecular weight distribution of the peptide
fraction with the highest antioxidant activity was also
evaluated.

Materials and methods

Fresh blood of porcine species was obtained from Shunxin
Agricultural Co. Ltd. (Shun-Yi District, Beijing). The
porcine blood was collected as the animal was bled and
sodium citrate (3 g/l blood) was quickly added to prevent
clotting and kept blow 4 °C to avoid bacterial proliferation.
The UF membrane reactor system for the fractionation of
hydrolysate, based on molecular weights, was from
XuBang Membrane Equipment Co., Ltd, Beijing, China.
Proteases used for enzymatic hydrolysis were as follows:
Trypsin and pepsin were from Amresco (Solon, OH, USA).
Alcalase and flavorzyme were from Novozymes (Novo
Nordisk, Bagsvaerd, Denmark). The crude protease A.
S.1398 was from Donghua Qiangsheng Biotechnology
Co., Ltd, Beijing, China and papain was from Javely
Biological Products Co., Ltd, Nanning, China. 2, 4, 6-
Trinitrobenzenesulphonic acid (TNBS, P2297), 2-deoxy-
D-ribose (D5899), linoleic acid (L1376), DPPH (D9132)
and ascorbic acid (A7506) were purchased from Sigma–
Aldrich (St. Louis, MO, USA). α-Tocopherol was the
product of Amresco (Solon, OH, USA). Vitamin B12
(Mw 1355 Da), L-glutathione oxidized (Mw 612 Da) and

L-tyrosine (Mw 181 Da) were purchased from BioDee
BioTech Co., Ltd, Beijing, China. All reagents used were
of analytical grade.

Preparation of hemoglobin sample The blood was centri-
fuged at 9000×g and 4 °C for 10 min using a high speed
refrigerated centrifuge (Model TGL-16A, Changsha
PINGFAN Instrument and Meter Co., Ltd., Changsha,
China), and the blood cells were obtained. The blood cells
were then added with an equal volume of water to burst,
and centrifuged at 4000×g and 4 °C to remove the stroma
and obtain the hemoglobin. The hemoglobin was lyoph-
ilized using a FD-1PF freeze dryer (Beijing DETIANYOU
Technology Development Co., Ltd., Beijing, China) to dry
powder and stored at 4 °C until use. Crude protein of the
hemoglobin sample was assayed using the method of
AOAC (2005).

Preparation of PHH Porcine hemoglobin (PH) was sepa-
rately hydrolyzed with 6 different enzymes. The character-
istics and optimal reaction conditions of 6 enzymes are
shown in Table 1. Five g of dried PH were dissolved in
100 ml distilled water at room temperature (25 °C). The PH
solutions were incubated with each protease at an optimal
temperature for different times with stirring and then heated
at 100 °C for 10 min to inactivate the enzyme. During
hydrolysis, the pH of the solution was adjusted to its
optimal value for each protease using 1 M NaOH or 1 M
HCl. After treatment, all hydrolysates obtained at different
times were centrifuged at 4200×g and 4 °C for 10 min to
remove the precipitates (low degraded hemoglobin and
heme). All hydrolysates were lyophilized for 96 h at −60 °C
and 0.04 mbar and stored at −20 °C. All hydrolysates
powders were used for preliminary screening of antioxidant
activity.

Degree of hydrolysis (DH) The cleavage of peptide bonds
during hydrolysis was quantified by the TNBS method
(Adler-Nissen 1979). After hydrolysis, test samples diluted
with deionized water (0.25 ml) were mixed with 2 ml of
sodium phosphate buffer (0.2 M, pH 8.2). TNBS reagent
(2 ml) was then added to each tube followed by mixing and
incubation at 50 °C for 60 min in a covered water bath to
exclude light. After incubation, reaction was quenched by
adding 0.1 M HCl (4.0 ml) to each tube. Samples were then
allowed to cool at room temperature for 30 min before the
absorbance were measured at 340 nm (Model UV-2600A,
UNICO, Shanghai, China). L-Leucine (0–2.0 mM) was
used to generate a standard curve and free amino groups
were expressed in terms of L-leucine. DH was calculated
using the following formula:

DH ¼ L1 � L0ð Þ= Lmax � L0ð Þ½ � � 100
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where, L1 is the amount of free amino groups released after
hydrolysis, L0 is the amount of free amino groups in the
original PH, and Lmax is total amount of free amino groups
in the original PH obtained after acid hydrolysis (6 M HCl
at 100 °C for 24 h).

Separation of active peptide fractions PHH with the
highest antioxidative activity was fractionated through
three different UF membranes having a range of MWCO
of 10, 5, and 3 kDa, respectively. Fractionates were
designed as follows: PHH-I with MW distribution>
10 kDa, PHH-II with MW distribution of 5–10 kDa,
PHH-III with MW distribution of 3–5 kDa and PHH-IV
with MW distribution<3 kDa. All peptide fractions
recovered were lyophilized in a freeze drier and stored
at −20 °C.

Antioxidant activity in linoleic acid model system The
antioxidant activity in a linoleic acid model system was
determined according to the method of Saha et al. (2004) with
some modifications. PHH was dissolved in 2.5 ml of 50 mM
phosphate buffer (pH 7.0) (5 mg/ml) and added into a 99.5%
ethanol (2.5 ml) and 99% linoleic acid (32.5 μl) mixture.
The final volume was adjusted to 6.25 ml with distilled
water. The same mixture without sample was used as
control. The mixed solution in sealed screw cap conical tube
was incubated at 40 °C in darkness and air-circulating
conditions. At 24-h intervals, aliquots of the reaction
mixtures were taken for oxidation determination using the
ferric thiocyanate (FTC) method (Mitsuda et al. 1996). An
aliquot (0.1 ml) of the reaction mixture was mixed with 75%
ethanol (4.7 ml) followed by the addition of 30% ammonium
thiocyanate (0.1 ml) and 20 mM ferrous chloride solution
(0.1 ml) in 3.5% HCl. After 3 min, extent of colour
development was measured at 500 nm. α-tocopherol and
butylated hydroxytoluene (BHT) were used as positive
controls. α-Tocopherol was diluted to 0.05 and 0.1 mg/ml
and BHT was diluted to 0.1 mg/ml for further uses.

DPPH radical scavenging activity The DPPH radical
scavenging activity of PHH was measured according to

the procedure described by Shimada et al. (1992). Test
samples in 1.5 ml of water were mixed with 1.5 ml of
1 mM DPPH ethanol solution. The sample concentration
(1.5 mg/ml) was applied for peptide fractions. This mixture
was shaken and kept at 25 °C for 30 min and then the
absorbance of the mixture was measured at 517 nm against
a blank.

Superoxide radical scavenging activity (SRSA) The SRSA
was determined by measuring the inhibition of the auto-
oxidation of pyrogallol using a slightly modified method of
Marklund and Marklund (1974). A sample solution (0.3 ml)
(5 mg/ml) and 2.61 ml of 50 mM phosphate buffer (pH 8.2)
were added into freshly prepared 90 μl of 3 mM pyrogallol
(dissolved in 10 mM HCl). The reaction mixture was added
100 μl of 0.2 M ascorbic acid immediately after incubation
for 4 min and the absorbance was measured at 325 nm
against a blank.

Hydroxyl radical scavenging activity (HRSA) The HRSA
was measured by the deoxyribose method (Siddhuraju and
Becker 2007) with some modifications. The reactions were
performed in 0.1 M, phosphate buffer (pH 7.4), containing
10 mM deoxyribose, 10 mM FeSO4·7H2O, 10 mM EDTA
and the samples with 5 mg/ml. The reaction was activated
by adding H2O2 to a concentration of 10 mM and the
reaction mixture was incubated for 1 h at 37 °C in a water
bath. After incubation, the colour was developed by adding
1 ml of 1% thiobarbituric acid (TBA) and 1 ml of 2.8% ice-
cold trichloroacetic acid (TCA) and heated at 100 °C for
10 min. After cooling, the absorbance was measured at
532 nm against a blank.

Determination of molecular weight distribution The PHH
fraction with the highest antioxidant activity was analyzed for
molecular weight distribution by gel filtration chromatogra-
phy. The peptides were loaded onto Sephadex G-10 column
(1.6×40 cm, Pharmacia, Sweden), eluted with deionized
water at a flow rate of 0.5 ml/min, and 3-ml fractions were
collected and monitored at 280 nm. A molecular weight
calibration curve was obtained from the following standards:

Proteases Source Activity, U/g Optimal conditions

Temperature °C pH Time h E/S w/w

Flavourzyme Aspergillus oryzae 20816 45 6.5 8 0.5%

Papain Carica papaya 36444 37 6.5 8 0.3%

A.S.1398 Bacillus subtilis 44660 45 7.0 8 0.2%

Alcalase Bacillus licheniformis 49355 55 8.0 8 0.2%

Pepsin Porcine stomach mucosa 6907 37 2.0 8 1.6%

Trypsin Porcine pancreas 45180 45 7.5 8 0.2%

Table 1 Characteristics and
optimal reaction conditions of
six proteases

E/S: Enzyme to substrate ratio
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Vitamin B12 (1,355 Da), L-glutathione oxidized (612 Da) and
L-tyrosine (181 Da).

Statistical analysis Experimental results were mean±SD of
three measurements. The values p<0.05 were regarded as
significant. Statistical analysis of the data was performed by
Student t test with the Statistical Analysis System software
(SAS Institute, 1999).

Results and discussion

Preparation of protein hydrolysates and their antioxidant
activity The crude protein content of the PH powder
prepared was 92%, which indicated that PH is very suitable
as a protein source for high-valued functional products. The
antioxidant activity of the PHH was investigated in DPPH
scavenging system and compared with that of PH. This
assay can be used for the primary characterization of the
scavenging potential of compounds (Krings and Berger
2001; Ramakrishna et al. 2008). It is well accepted that the
DPPH radical scavenging by antioxidants is attributable to
their hydrogen donating ability (Chen and Ho 1995).
Therefore, DPPH is often used as a substrate to evaluate
the antioxidative activity of an antioxidant.

Six different proteases, alcalase, A.S.1398, papain,
flavourzyme, pepsin and trypsin, originated from different
sources and with distinct substrate specificities, were used
for the hydrolysis of PH. DH and antioxidant activity of the
hydrolysates were monitored for a 6-h period for each
protease (Fig. 1). The DH obtained increased with
increasing hydrolysis time. The hydrolysis of PH with
proteases proceeded at a high rate during the initial 60 min
and thereafter slowed down. However, there was no
correlation (p>0.05) between hydrolysis time and antioxi-
dant activity. The result was also found in the process of
alcalase-hydrolyzed silver carp protein (Dong et al. 2008),
Protease P-hydrolyzed sericin (Wu et al. 2008) and five
proteases hydrolyzed rice bran protein (Adebiyi et al.
2007). This result indicates that the antioxidant activity of
the hydrolysates is inherent to their characteristics amino
acid sequences of peptides depending on protease specific-
ities. Alcalase showed the highest DH values, followed by
pepsin (Fig. 1). However, among the hydrolysates, pepsin-
derived PHH prepared at 60 min showed the strongest
antioxidant activity (67.0±1.84%), which was significantly
higher than that of the same dose of PH (21.2±1.61%) (p<
0.01) (Fig. 2). Sakanaka et al. (2004) also indicated that
egg-yolk protein hydrolysate exhibited strong antioxidative
activity in comparison with the native protein. It suggested
that the disruption of native structure by enzymatic
hydrolysis might result in unfolding, thereby exposing

active amino acid residues and patches, which were capable
of reacting with oxidants. The antioxidant activities of PHH
in other antioxidant assays (e.g. inhibition of linoleic acid
autoxidation) with various concentrations were also evalu-
ated and the results also showed that the peptic hydrolysate
exhibited the excellent antioxidant activity (data not
shown). Pepsin preferably digests peptide bonds by
cleaving after the N-terminal of aromatic amino acids such
as Phe, Trp and Tyr. The phenyl groups of the residues at
peptide ends were likely to scavenging the free radical to
prevent DNA damages. Aubes-Dufau et al. (1996) found
that the highest concentrations of peptides composing
mainly of hydrophobic amino acid residues were reached
in pepsin-derived bovine hemoglobin hydrolysates with 8~
16% DH. The DH was 7.7% at 60 min in this work, which
was very close to 8%. Beyond 60 min, most of the
antioxidant peptides were possibly get hydrolyzed into
lower antioxidant ones. The antioxidant activity of PHH
prepared with some proteases (e.g. flavourzyme, which is
the endo- and exopeptidases enzyme mixture that can
produce both amino acid and peptides) was lower than PH
irrespective of the hydrolysis time.

In order to obtain a hydrolysate or peptide fraction
with both the desired molecular size and nutritional

Fig. 1 Hydrolysis process of porcine hemoglobin (PH). Six proteases:
(♦)Trypsin, (○)Flavorzyme, (■)Papain, (×)A.S.1398, (●)Alcalase, (▲)
Pepsin. The values are means±SD of triplicate measurements
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properties, the PHH was further separated by using three
kinds of UF membranes (10-, 5-, and 3-kDa MWCO
membranes) according to molecular size and four kinds
of permeates (PHH-I, PHH-II, PHH-III and PHH-IV)
were obtained.

Measurement of UF fractions on inhibition of linoleic acid
autoxidation Several toxic by-products of LPO can damage
biomolecules including DNA, although these biomolecules
are away from the site of their generation (Box and
Maccubbin 1997). PHH-IV, which is 3-kDa permeate, had
a higher antioxidant activity than the other fractions
(Fig. 3). The auto-oxidation of linoleic acid of control was
accompanied by a rapid increase of peroxide value at day 1
of testing, reached maximum levels on day 7 and dropped
on day 8. PHH fractions showed strong inhibitory effects,
as compared to the control (p<0.05), and significantly
prolonged the induction period of auto-oxidation of linoleic
acid. From the FTC results, significant differences (p<0.05)
in inhibitory effects were found among four fractions in the
order of PHH-IV>PHH-III>PHH-II > PHH-I. The inhibi-

tory effect by PHH-IV was found to be 93.80±0.97%,
which was significantly higher than the effect of 0.1 mg/ml
of a lipid-soluble natural antioxidant α-tocopherol (p<0.01)
and equivalent to a commonly used synthetic antioxidant
BHT (0.1 mg/ml) (p>0.05). This result showed that higher
antioxidant activities by PHH-IV are thought to be due to
the low molecular weight as it can be easily adsorbed or
loosely localize at oil/water interface where oxidation takes
places and thereby reduce radical-mediated LPO. The
inhibitory effect by PHH-IV was similar to the trypsin-
derived peptides from the hydrolysate of hoki skin gelatin
(Mendis et al. 2005). The differences may be attributed to
differences in type and nature of protein and hydrolysis
pattern of protease.

DPPH radical scavenging activity of UF fractions DPPH is
a stable free radical with a characteristic absorption, which
decreases significantly on exposure to proton radical
scavengers (Tung et al. 2007; Singh et al. 2009). PHH-IV
shows strong scavenging activity (83.4±3.83%) on DPPH
radicals, which was significantly higher than that of other
fractions (p<0.05) (Fig. 4). The scavenging activity of
PHH-IV was similar to that of peptides isolated from
alcalase-derived hydrolysate of alfalfa leaf protein (Xie et
al. 2008) and closer to that of egg-yolk protein hydrolysates
prepared by proteinase from Bacillus sp. (Sakanaka and
Tachibana 2006). Other peptide fractions also showed
strong DPPH radical scavenging activities; PHH-I showed
higher scavenging activity (69.9±1.67%) than PHH-II and
PHH-III but no significant difference was found between
PHH-I and PHH-III (p>0.05). The order of DPPH
scavenging activity of peptide fractions from PHH was

Fig. 3 Antioxidative activity measured in a linoleic acid model
system in the presence of peptide fractions. Higher UV absorbance at
500 nm represents higher lipid peroxidation: (▲) control, (○) PHH-I,
(▼) PHH-II, (△) PHH-III, (■) PHH-IV, (□)α-tocopherol, (♦) BHT.
The values are means±SD of triplicate measurements

Fig. 2 Comparison on DPPH scavenging effects of porcine hemo-
globin hydrolysate prepared using six proteases. Six proteases: ( )
Flavorzyme, ( )Trypsin, ( )Papain, ( )A.S.1398, ( )Alcalase, ( )
Pepsin. Native porcine hemoglobin (■) was adopted as control. The
hydrolysate with the highest DPPH radical scavenging activity was
indicated by an arrow. The values are means±SD of triplicate
measurements
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similar to that of chickpea protein peptide fractions (Li et al.
2008). It was evident that PHH-IV did show a strong
hydrogen donating ability to act as a peroxyl radical
scavenger, thereby terminating the oxidation chain reaction
of fat.

SRSA of UF fractions Superoxide radical is known to be
very harmful to cellular components as a precursor of the
more reactive oxygen species, which contribute to tissue
damage and cause various diseases, and thus study of the
scavenging activity of this radical is important (Kanatt et al.
2007). Superoxide anion scavenging of different PHH
fractions is presented in Fig. 5. All samples treated in this
experiment showed considerable scavenging abilities over
superoxide anion. The PHH-IV showed significant stronger

superoxide anion scavenging activity (27.8±1.64%) than
other peptide fractions (p<0.05), which was similar to that
of antioxidant peptides isolated from hoki (Johnius belen-
gerii) frame protein (Kim et al. 2007). The other fractions
when used at the same concentration also showed super-
oxide anion scavenging activities in the order PHH-III>
PHH-II > PHH-I. This result implied that PHH-IV is a
strong superoxide scavenger and its capacity to scavenge
superoxide may contribute to its antioxidant activity.

HRSA of UF fractions The chemical activity of hydroxyl
radical is the strongest among ROS. It easily induces severe
damage to DNA leading to carcinogenesis, mutagenesis and
cytotoxicity (Ardestani and Yazdanparast 2007). Therefore,
the removal of hydroxyl radical is probably one of the most
effective defenses of a living body against various diseases.

Fig. 6 Hydroxyl radical scavenging activity of peptide fractions. The
values are means±SD of triplicate measurements. Values with
different letters are significantly different (P<0.05)

Fig. 5 Superoxide anion radical scavenging activity of peptide
fractions. The values are means±SD of triplicate measurements.
Values with different letters are significantly different (P<0.05)

Fig. 4 DPPH radical scavenging activity of peptide fractions. The
values are means±SD of triplicate measurements. Values with
different letters are significantly different (P<0.05)
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Hydrolysates from various protein sources, such as Alaska
pollack frame (Je et al. 2005) and conger eel muscle
(Ranathunga et al. 2006) have been reported to have good
hydroxyl radical scavenging activity. Figure 6 shows that
PHH-IV had strong hydroxyl radical scavenging activity,
which could be attributed to the combined effects of
donation of hydrogen atoms and scavenging of active
oxygen. PHH-IV led to the highest hydroxyl radical
scavenging activity (55.8±2.15%), which was significantly
higher than that of other fractions (p<0.05). At the same
dose, PHH-I showed higher scavenging activity (38.0±
4.60%) than PHH-II and PHH-III but no significant
difference was found between PHH-I and PHH-III (p>
0.05). Moreover, no significant difference (p>0.05) in
scavenging activity was noticeable between PHH-II and
PHH-III. The scavenging activities of peptide fractions on
hydroxyl radical and DPPH radical followed the same
order, which could be concluded that PHH-IV possessed
the strongest donating hydrogen ability, followed by PHH-I,
PHH-III and PHH-II. This result suggested that PHH-IV can
be considered as a scavenger of hydroxyl radicals to exert
protection against oxidative damage.

Molecular weight distribution Considering that PHH-IV
was found to possess the highest antioxidant activity, this
fraction was analyzed for molecular weight distribution
(Fig. 7). The chromatographic data indicated that PHH-IV
was composed of two major fractions, named F1 and F2,
respectively. Molecular weight of the two fractions was
determined as 2476 Da (F1) and 1042 Da (F2). Moure et al.
(2006) had reported that the antioxidant activity of hydro-
lysates is dependent on their molecular weight distribution.
In this study, results revealed that the peptide fraction with
molecular weight ranging from 180 to 3000 Da was
probably associated with higher antioxidant activity. These
findings are in agreement with other studies (Jeon et al.
2000; Kim et al. 2007) and support the fact that functional
properties of antioxidant peptides are highly influenced by
properties such as molecular mass.

Conclusion

Among 6 proteases, pepsin was more effective than other
proteases in preparing PHH with antioxidant activity. UF
membrane technology was an efficient and ecological
process for the fractionation of antioxidative peptides
from PHH. We separated peptic PHH with different MW
distributions using UF system and among these PHH-IV
exhibited the highest antioxidant activity, including the
ability to inhibit the autoxidation of linoleic acid and the
scavenging effect on DPPH, superoxide and hydroxyl

radicals. PHH-IV possessed the strongest hydrogen
donating ability, followed by PHH-I, PHH-III and
PHH-II. PHH-IV was composed of two major peptide
fractions, which were located at 2476 Da (F1) and
1042 Da (F2). PHH-IV would be expected to protect
against oxidative damage in living systems in relation to
aging and carcinogenesis. Therefore, it could be used as
a promising natural antioxidant for application in food,
cosmetic and medicine industries.
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